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Linear Fitting Revisited

Linear Fitting Revisited

Linear fitting solves this problem:

Given n data points pi = [xi1 · · · xim]⊤, 1 ≤ i ≤ n, and their

corresponding values vi, find a linear function f that

minimizes the error

E =
n
∑

i=1

(f(pi)− vi)
2 . (1)

The linear function f(pi) has the form

f(p) = f(x1, . . . , xm) = a1x1 + · · ·+ amxm + am+1. (2)

Leow Wee Kheng (NUS) Matrix Differentiation 2 / 36



Linear Fitting Revisited

The data points are organized into a matrix equation

Da = v, (3)

where

D =







x11 · · · x1m 1
...

. . .
...

...
xn1 · · · xnm 1






, a =











a1
...
am
am+1











, and v =







v1
...
vn






. (4)

The solution of Eq. 3 is

a = (D⊤D)−1D⊤v. (5)
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Linear Fitting Revisited

Denote each row of D as d⊤

i . Then,

E =

n
∑

i=1

(d⊤

i a− vi)
2 = ‖Da− v‖2. (6)

So, linear least squares problem can be described very compactly as

min
a

‖Da− v‖2. (7)

To show that the solution in Eq. 5 minimizes error E, need to
differentiate E with respect to a and set it to zero:

dE

da
= 0. (8)

How to do this differentiation?
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Linear Fitting Revisited

The obvious (but hard) way:

E =

n
∑

i=1





m
∑

j=1

ajxij + am+1 − vi





2

. (9)

Expand equation explicitly giving

∂E

∂ak
=



































2
n
∑

i=1





m
∑

j=1

ajxij + am+1 − vi



xik, for k 6= m+ 1

2
n
∑

i=1





m
∑

j=1

ajxij + am+1 − vi



 , for k = m+ 1

Then, set ∂E/∂ak = 0 and solve for ak.
This is slow, tedious and error prone!
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Linear Fitting Revisited

Which one do you like to be?
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Linear Fitting Revisited

At least like these?

Leow Wee Kheng (NUS) Matrix Differentiation 7 / 36



Matrix Derivatives

Matrix Derivatives

There are 6 common types of matrix derivatives:

Type Scalar Vector Matrix

Scalar
∂y

∂x

∂y

∂x

∂Y

∂x

Vector
∂y

∂x

∂y

∂x

Matrix
∂y

∂X
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Matrix Derivatives

Derivatives by Scalar

Numerator Layout Notation Denominator Layout Notation

∂y

∂x

∂y

∂x

∂y

∂x
=













∂y1
∂x
...

∂ym
∂x













∂y

∂x
=

[

∂y1
∂x

· · ·
∂ym
∂x

]

≡
∂y⊤

∂x

∂Y

∂x
=













∂y11
∂x

· · ·
∂y1n
∂x

...
. . .

...
∂ym1

∂x
· · ·

∂ymn

∂x












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Matrix Derivatives

Derivatives by Vector

Numerator Layout Notation Denominator Layout Notation

∂y

∂x
=

[

∂y

∂x1
· · ·

∂y

∂xn

]

∂y

∂x
=













∂y

∂x1
...
∂y

∂xn













∂y

∂x
=













∂y1
∂x1

· · ·
∂y1
∂xn

...
. . .

...
∂ym
∂x1

· · ·
∂ym
∂xn













∂y

∂x
=













∂y1
∂x1

· · ·
∂ym
∂x1

...
. . .

...
∂y1
∂xn

· · ·
∂ym
∂xn













≡
∂y

∂x⊤
≡

∂y⊤

∂x
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Matrix Derivatives

Derivative by Matrix

Numerator Layout Notation Denominator Layout Notation

∂y

∂X
=













∂y

∂x11
· · ·

∂y

∂xm1
...

. . .
...

∂y

∂x1n
· · ·

∂y

∂xmn













∂y

∂X
=













∂y

∂x11
· · ·

∂y

∂x1n
...

. . .
...

∂y

∂xm1

· · ·
∂y

∂xmn













≡
∂y

∂X⊤
≡

∂y

∂X
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Matrix Derivatives

Pictorial Representation

numerator
layout

denominator
layout

.

. ..
. .

.

.
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Matrix Derivatives

Caution

◮ Most books and papers don’t state which convention they use.

◮ Reference [2] uses both conventions but clearly differentiate them.

∂y

∂x⊤
=

[

∂y

∂x1
· · ·

∂y

∂xn

]

∂y

∂x
=













∂y

∂x1
...
∂y

∂xn













∂y

∂x⊤
=













∂y1
∂x1

· · ·
∂y1
∂xn

...
. . .

...
∂ym
∂x1

· · ·
∂ym
∂xn













∂y⊤

∂x
=













∂y1
∂x1

· · ·
∂ym
∂x1

...
. . .

...
∂y1
∂xn

· · ·
∂ym
∂xn













◮ It is best not to mix the two conventions in your equations.

◮ We adopt numerator layout notation.
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Matrix Derivatives Commonly Used Derivatives

Commonly Used Derivatives

Here, scalar a, vector a and matrix A are not functions of x and x.

(C1)
da

dx
= 0 (column matrix)

(C2)
da

dx
= 0⊤ (row matrix)

(C3)
da

dX
= 0⊤ (matrix)

(C4)
da

dx
= 0 (matrix)

(C5)
dx

dx
= I
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Matrix Derivatives Commonly Used Derivatives

(C6)
da⊤x

dx
=

dx⊤a

dx
= a⊤

(C7)
dx⊤x

dx
= 2x⊤

(C8)
d(x⊤a)2

dx
= 2x⊤aa⊤

(C9)
dAx

dx
= A

(C10)
dx⊤A

dx
= A⊤

(C11)
dx⊤Ax

dx
= x⊤(A+A⊤)
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Matrix Derivatives Math Notation

Math Notation

We represent a vector x as a column matrix

x =











x1
x2
...

xm











.

Its transpose x⊤ is a row matrix

x⊤ =
[

x1 x2 · · · xm
]

.
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Matrix Derivatives Math Notation

Consider two vectors x and y with the same number of components.
Their inner product x⊤y is actually a 1×1 matrix:

x⊤y = [ s ]

where

s =
m
∑

i=1

xiyi.

For notational inconvenience, we usually drop the matrix and
regard the inner product as a scalar, i.e.,

x⊤y =
m
∑

i=1

xiyi.
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Matrix Derivatives Derivatives of Scalar by Scalar

Derivatives of Scalar by Scalar

(SS1)
∂(u+ v)

∂x
=

∂u

∂x
+

∂v

∂x

(SS2)
∂uv

∂x
= u

∂v

∂x
+ v

∂u

∂x
(product rule)

(SS3)
∂g(u)

∂x
=

∂g(u)

∂u

∂u

∂x
(chain rule)

(SS4)
∂f(g(u))

∂x
=

∂f(g)

∂g

∂g(u)

∂u

∂u

∂x
(chain rule)
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Matrix Derivatives Derivatives of Vector by Scalar

Derivatives of Vector by Scalar

(VS1)
∂au

∂x
= a

∂u

∂x

where a is not a function of x.

(VS2)
∂Au

∂x
= A

∂u

∂x

where A is not a function of x.

(VS3)
∂u⊤

∂x
=

(

∂u

∂x

)⊤

(VS4)
∂(u+ v)

∂x
=

∂u

∂x
+

∂v

∂x
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Matrix Derivatives Derivatives of Vector by Scalar

(VS5)
∂g(u)

∂x
=

∂g(u)

∂u

∂u

∂x
(chain rule)

with consistent matrix layout.

(VS6)
∂f(g(u))

∂x
=

∂f(g)

∂g

∂g(u)

∂u

∂u

∂x
(chain rule)

with consistent matrix layout.
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Matrix Derivatives Derivatives of Matrix by Scalar

Derivatives of Matrix by Scalar

(MS1)
∂aU

∂x
= a

∂U

∂x

where a is not a function of x.

(MS2)
∂AUB

∂x
= A

∂U

∂x
B

where A and B are not functions of x.

(MS3)
∂(U+V)

∂x
=

∂U

∂x
+

∂V

∂x

(MS4)
∂UV

∂x
= U

∂V

∂x
+

∂U

∂x
V (product rule)
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Matrix Derivatives Derivatives of Scalar by Vector

Derivatives of Scalar by Vector

(SV1)
∂au

∂x
= a

∂u

∂x

where a is not a function of x.

(SV2)
∂(u+ v)

∂x
=

∂u

∂x
+

∂v

∂x

(SV3)
∂uv

∂x
= u

∂v

∂x
+ v

∂u

∂x
(product rule)

(SV4)
∂g(u)

∂x
=

∂g(u)

∂u

∂u

∂x
(chain rule)

(SV5)
∂f(g(u))

∂x
=

∂f(g)

∂g

∂g(u)

∂u

∂u

∂x
(chain rule)
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Matrix Derivatives Derivatives of Scalar by Vector

(SV6)
∂u⊤v

∂x
= u⊤

∂v

∂x
+ v⊤

∂u

∂x
(product rule)

where
∂u

∂x
and

∂v

∂x
are in numerator layout.

(SV7)
∂u⊤Av

∂x
= u⊤A

∂v

∂x
+ v⊤A⊤

∂u

∂x
(product rule)

where
∂u

∂x
and

∂v

∂x
are in numerator layout,

and A is not a function of x.
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Matrix Derivatives Derivatives of Scalar by Matrix

Derivatives of Scalar by Matrix

(SM1)
∂au

∂X
= a

∂u

∂X

where a is not a function of X.

(SM2)
∂(u+ v)

∂X
=

∂u

∂X
+

∂v

∂X

(SM3)
∂uv

∂X
= u

∂v

∂X
+ v

∂u

∂X
(product rule)

(SM4)
∂g(u)

∂X
=

∂g(u)

∂u

∂u

∂X
(chain rule)

(SM5)
∂f(g(u))

∂X
=

∂f(g)

∂g

∂g(u)

∂u

∂u

∂X
(chain rule)
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Matrix Derivatives Derivatives of Vector by Vector

Derivatives of Vector by Vector

(VV1)
∂au

∂x
= a

∂u

∂x
+ u

∂a

∂x
(product rule)

(VV2)
∂Au

∂x
= A

∂u

∂x

where A is not a function of x.

(VV3)
∂(u+ v)

∂x
=

∂u

∂x
+

∂v

∂x

(VV4)
∂g(u)

∂x
=

∂g(u)

∂u

∂u

∂x
(chain rule)

(VV5)
∂f(g(u))

∂x
=

∂f(g)

∂g

∂g(u)

∂u

∂u

∂x
(chain rule)
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Matrix Derivatives Notes on Denominator Layout

Notes on Denominator Layout

In some cases, the results of denominator layout are the transpose of
those of numerator layout. Moreover, the chain rule for denominator
layout goes from right to left instead of left to right.

Numerator Layout Notation Denominator Layout Notation

(C7)
da⊤x

dx
= a⊤

da⊤x

dx
= a

(C11)
dx⊤Ax

dx
= x⊤(A+A⊤)

dx⊤Ax

dx
= (A+A⊤)x

(VV5)
∂f(g(u))

∂x
=

∂f(g)

∂g

∂g(u)

∂u

∂u

∂x

∂f(g(u))

∂x
=

∂u

∂x

∂g(u)

∂u

∂f(g)

∂g
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Matrix Derivatives Derivations of Derivatives

Derivations of Derivatives

(C6)
da⊤x

dx
=

dx⊤a

dx
= a⊤

(The not-so-hard way)

Let s = a⊤x = a1x1 + · · ·+ anxn. Then,
∂s

∂xi
= ai. So,

ds

dx
= a⊤.

(The easier way)

Let s = a⊤x =
∑

i

aixi. Then,
∂s

∂xi
= ai. So,

ds

dx
= a⊤.

(C7)
dx⊤x

dx
= 2x⊤

Let s = x⊤x =
∑

i

x2i . Then,
∂s

∂xi
= 2xi. So,

ds

dx
= 2x⊤.
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Matrix Derivatives Derivations of Derivatives

(C8)
d(x⊤a)2

dx
= 2x⊤aa⊤

Let s = x⊤a. Then,
∂s2

∂xi
= 2s

∂s

∂xi
= 2 s ai. So,

ds2

dx
= 2x⊤aa⊤.

(C9)
dAx

dx
= A

(The hard way)

Ax =







a11 · · · a1n
...

. . .
...

an1 · · · ann













x1
...
xn






=







a11x1 + · · ·+ a1nxn
...

an1x1 + · · ·+ annxn






.

(The easy way)

Let s = Ax. Then, si =
∑

j

aijxj , and
∂si
∂xj

= aij . So,
ds

dx
= A.
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Matrix Derivatives Derivations of Derivatives

(C10)
dx⊤A

dx
= A⊤

Let y⊤ = x⊤A, and aj denote the j-th column of A. Then, yi = x⊤aj .

Applying (C6) yields
dyi
dx

= a⊤j . So,
dy⊤

dx
= A⊤.

(C11)
dx⊤Ax

dx
= x⊤(A+A⊤)

Apply (SV6) to
dx⊤Ax

dx
and obtain x⊤

dAx

dx
+ (Ax)⊤

dx

dx
,

Next, apply (C9) to the first part of the sum, and obtain

x⊤A+ (Ax)⊤, which is x⊤(A+A⊤).

(Need to prove SV6—Homework.)
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Linear Fitting Revisited

Linear Fitting Revisited

Now, let us show that the solution

a = (D⊤D)−1D⊤v.

minimizes error E

E =
n
∑

i=1

(d⊤

i a− vi)
2 = ‖Da− v‖2.

Proof:

E = ‖Da− v‖2 = (Da− v)⊤(Da− v)

= (a⊤D⊤ − v⊤)(Da− v)

= a⊤D⊤Da− a⊤D⊤v − v⊤Da+ v⊤v.
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Linear Fitting Revisited

E = a⊤D⊤Da− a⊤D⊤v − v⊤Da+ v⊤v.

Apply (C11), (C6), (C9) and (C2) to the four terms.

dE

da
= a⊤(D⊤D+D⊤D)− (D⊤v)⊤ − v⊤D+ 0

= 2a⊤D⊤D− 2v⊤D.

Set dE/da = 0 and obtain

2a⊤D⊤D− 2v⊤D = 0

a⊤D⊤D = v⊤D

Transpose both sides of the equation and get

D⊤Da = D⊤v

a = (D⊤D)−1D⊤v. �
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Summary

Summary

◮ Matrix calculus studies calculus of matrices.

◮ There are 6 common derivatives of matrices.

◮ There are 2 competing notational convention:
numerator layout notation vs. denominator layout convention.

◮ We adopt numerator layout notation.

◮ Do not mix the two conventions in your equations.

◮ Use matrix differentiation to prove that pseudo-inverse minimizes
sum square error.
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Summary

Use the right tool

become lightning fast!
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Probing Questions

Probing Questions

◮ Is there a simple way to double check that the derivative result
makes sense?

◮ Why do we use sum square error for linear fitting? Can we use
other forms of errors?

◮ Six common types of matrix derivatives are discussed. Three other
types are left out. Can we work out the other derivatives, e.g.,
derivatives of vector by matrix or matrix by matrix?
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Homework

Homework

1. What are the key concepts that you have learned?

2. Prove the product rule SV3 using scalar product rule SS2.

(SV3)
∂uv

∂x
= u

∂v

∂x
+ v

∂u

∂x

3. Prove the product rule SV6 using SV3.

(SV6)
∂u⊤v

∂x
= u⊤

∂v

∂x
+ v⊤

∂u

∂x

where
∂u

∂x
and

∂v

∂x
are in numerator layout.

4. Q2 of AY2015/16 Final Evaluation.
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